S V R K GOVERNMENT DEGREE COLLEGE :: NIDADAYOLE TABLE - A - CURRICULAR PLAN - LECTURER WISE.0

NAME OF THE LECTURER DEPARTMENT : M.USHARANI : CHEMISTRY

CLASS:II M.P.C

YEAR: 2021-2022

SEMESTER: III Paper:3

	Nov	-	SERIAL NUM	BER
4 th week	3 rd week	2	MONTII & W	EEK
4 Hrs	4 Hrs	w	HOURS AVAIL	ABLE
Alcohols: preparation, properties and relative reactivity of 1°, 2°, 3° alcohols, Bouvet Blanc Reduction; Oxidation Of Diols By Periodic Acid Andlead Tetraacetate, Pinacol- Pinacolone Rearrangement;	Chemistry of Halogenated Hydrocarbons:Alkyl Halides: Methods of preparation and properties, nucleophilic substitution reactions—SNI, SN2 and SNi mechanisms with stereo chemical aspects and effect of solvent etc.; nucleophilic substitution vs. elimination, Williamson's synthesis. Aryl Halides: Preparation (including preparation from diazonium salts) and properties, nucleophilic aromatic substitution; SN Ar, Benzyne mechanism. Relative reactivity of alkyl, allyl, benzyl, vinyl and aryl halides towards nucleophilic substitution reactions.	4	SYLLABUS TOPIC	
Dihydric ,Tri hydric alcohols Introduction	Distinction between Nuclear Halogen and side chain halogen	5	ADDITIONAL IN /VALUE ADDITION	NPUT
Lecture/ICT /Practical	Lecture/ICT /Practical	6	ACTIVITY	CURR
3 Hrs	4 Hrs	7	HOURS ALLOTED	CURRICULAR ACTIVITY
		∞	WHETHER CONDUCTED	ACTIVIT
		9	IF NOT, ALTERNATIV E DATE	*
Assign ment		10	ACTIVITY	CO-CUR
1 Hr		=	HOURS ALLOTED	RICUL
		12	WHETHER CONDUCTED	CO-CURRICULAR ACTIVITIY
		13	IF NOT, ALTERNATIV E DATE	IVITIV
		14	REMARKS	

	1 s week	4 Hrs	Phenols: Preparation And Properties; Acidity And Factors Affecting It, Ring substitution reactions, Reimer–Tiemann and Kolbe's–Schmidt Reactions, Fries and Claisen Rearrangement with mechanism;		Lecture/ICT /Practical	4 Hrs					
Dec	2 nd week	4Hrs	UNIT II: Carbonyl Compounds: Structure, reactivity, preparation and properties; Nucleophilic Addition, Nucleophilic Addition-elimination reactions with ammonia derivatives Mechanisms of Aldol and Benzoin Condensation,	Analysis of aldehydes and ketones	Lecture/ICT /Practical	3 Hrs	1 '	Student seminar	1 Hr		
	3 rd week	4Hrs	Claisan-Schmidt, Perkin, Cannizzaro and Wittig reaction, Beckmann Haloform Reaction And Baeyer Villiger oxidation, α- substitution reactions, oxidations and reductions (Clemmensen, wolf –kishner, with LiAlH4 &NaBH4).		Lecture/ICT /Practical Mid exam	3Hrs 1Hrs					
	4 th week	4 Hrs	Addition Re actions Of α, β-unsaturated carbonyl compounds: Michael Addition. Active Methylene Compounds: Keto-enol tautomerism. Preparation And Synthetic Applications Diethyl malonate and ethyl acetoacetate.		Lecture/ICT /Practical	4 Hrs					
an	1 st week	4 Hrs	UNIT III: Carboxylic Acids and their Derivatives: General methods of preparation, physical properties and reactions of monocarboxylic acids, effect of substituent acidic strength. Typical reactions of carboxylic acids, hydroxy acids and unsaturated acids	Uses of carboxylic acids and their derivatives.	Lecture/ICT /Practical	3 Hrs		Assign ment	lHr		
	2 nd week	4Hrs	Preparation And Reactions Of Acid Chlorides, anhydrides, esters and amides; Comparative study of nucleophilic substitution at acyl group-Mechanism of acidic and alkaline hydrolysis of esters, Claisen Condensation, Reformatsky reactions and Curtius		Lecture/ICT /Practical	4 Hrs					

Rearrangement

	3 rd week	4Hrs	Reactions involving H, OH and COOH groups- salt formation, anhydride formation, acid chloride formation, amide formation and esterification (mechanism). Degradation of carboxylic acids by Huns-Diecker reaction, decarboxylation by Schimdt reaction, Arndt-Eistert synthesis, halogenation by Hell-Volhard- Zelinsky reaction.		Lecture/ICT /Practical	4 Hrs					
	4 th week	4Hrs	UNIT IV: SPECTROSCOPY Molecular Spectroscopy:Interaction of electromagneticradiation with molecules and varioustypesof spectra; Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution. Vibrational Spectroscopy: Classical Equation Of Vibration, computation of force constant, Harmonic and anharmonic oscillator, Morse Potential curve, vibrational degrees of freedom for polyatomic molecules, modes of vibration.	Electromagneti c radiation "Pro perties of light, Effect of magnetic field on nucleus.	Lecture/ICT /Practical	3 Hrs		Quiz	1 Hr		
Feb	1 st week	4Hrs	Selection rules for vibrational transitions, Fundamental Frequencies, overtones and hot bands. Electronic spectroscopy: Energy levels of molecular orbitals (σ, π, n) . Selection rules for electronic spectra. Types of electronic transitions in molecules, effect of conjugation. Concept of chromophore. bathochromic and hypsochromic shifts. Beer-Lambert's law and its limitations.		Lecture/ICT /Practical Mid exam	3 Hrs					
	2 nd week	4Hrs	Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone		Lecture/ICT /Practical	4 Hrs					202

3 rd week	c 4Hı	Reactions involving H, OH and COOH groups- salt formation, anhydride formation, acid chloride formation, amide formation and esterification (mechanism). Degradation of carboxylic acids by Huns-Diecker reaction, decarboxylation by Schimdt reaction, Arndt- Eistert synthesis, halogenation by Hell- Volhard- Zelinsky reaction.		Lecture/ICT /Practical	. 4 Hrs				
4 th week	4Hrs	UNIT IV: SPECTROSCOPY Molecular Spectroscopy:Interaction of electromagnetic radiation with molecules and varioustypesof spectra; Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution. Vibrational Spectroscopy: Classical Equation Of Vibration, computation of force constant, Harmonic and anharmonic oscillator, Morse Potential curve, vibrational degrees of freedom for polyatomic molecules, modes of vibration.	Electromagnetic c radiation "Pro perties of light, Effect of magnetic field on nucleus.	Lecture/ICT	3 Hrs		Quiz	1 Hr	
1 st week	4Hrs	Selection rules for vibrational transitions, Fundamental Frequencies, overtones and hot bands. Electronic spectroscopy: Energy levels of molecular orbitals (σ, π, n). Selection rules for electronic spectra. Types of electronic transitions in molecules, effect of conjugation. Concept of chromophore. bathochromic and hypsochromic shifts. Beer-Lambert's law and its limitations.		Lecture/ICT /Practical Mid exam	3 Hrs 1 Hr				
2 nd week	4Hrs	Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of nuclear magnetic resonance, equivalent and non-equivalent protons, position of signals. Chemical shift, NMR splitting of signals -spin-spin coupling, coupling constants. Applications of NMR with suitable examples - ethyl bromide, ethanol, acetaldehyde, 1,1,2-tribromo ethane, ethyl acetate, toluene and acetophenone		Lecture/ICT /Practical	4 Hrs				

	4 Hrs	Lecture/ICT /Practical	Rivision	4Hrs	4 th week
Assign 1Hr ment	3 Hrs	Lecture/ICT 3 /Practical	UNIT V: Application of Spectroscopy to Simple Organic Molecules Application of visible, ultraviolet and Infrared spectroscopy in organic molecules. Application of electronic spectroscopy and Woodward rules for calculating λmax of conjugated dienes and α,β – unsaturated compounds.	4Hrs	3 rd week

SIGNATURE OF THE HEAD OF THE DEPARTMENT

SIGNATURE OF THE LECTURER

SIGNATURE OF THE PRINCIPAL